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ABSTRACT

Linear theory is a well developed framework for characterizing instabilities in weakly collisional

plasmas, such as the solar wind. In the previous instalment of this series, we analyzed ∼ 1.5M proton

and α particle Velocity Distribution Functions (VDFs) observed by Helios I and II to determine the

statistical properties of the standard instability parameters such as the growth rate, frequency, the

direction of wave propagation, and the power emitted or absorbed by each component, as well as to

characterize their behavior with respect to the distance from the Sun and collisional processing. In this

work, we use this comprehensive set of instability calculations to train a Machine Learning algorithm

consisting of three interlaced components that: 1) predict if an interval is unstable from observed VDF

parameters; 2) predict the instability properties for a given unstable VDF; and 3) classify the type of

the unstable mode. We use these methods to map the properties in multi-dimensional phase space to

find that the parallel-propagating, proton-core-induced Ion Cyclotron mode dominates the young solar

wind, while the oblique Fast Magnetosonic mode regulates the proton beam drift in the collisionally

old plasma.

Keywords: solar wind — plasmas — instabilities — Sun: corona

1. INTRODUCTION

Solar wind plasma is rarely observed to be in Lo-

cal Thermodynamic Equilibrium (LTE), but rather con-

tains non-Maxwellian features that imply additional free

energy stored in the constituent particles’ Velocity Dis-

tribution Function (VDF) (for review, see (Marsch 2012;

Verscharen et al. 2019)). If the VDF is not far from

equilibrium, rare collisions constantly reshaping it to-

wards a Maxwellian through a slow and steady process.

However, if the distribution is sufficiently far from LTE,

it will drive one or more unstable wave modes, where

power is emitted from the particles in the form of waves.

This emission occurs over significantly shorter timescales

then the collisional processing, pushing the VDF into a

state known as ”marginal stability”—where no further

instabilities are induced, but the distribution is not in

LTE and the VDF continues to be slowly processed by

collisions. Although linear instabilities, as well as pre-
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scriptions for their identification, are well established in

the literature (Gary 1993; Klein 2013; Yoon et al. 2017),

a detailed description of which modes govern solar wind

evolution through its various phases as it expands into

the heliosphere, and how instabilities and collisions in-

teract, is still incomplete.

The preceding paper in the series (Martinović et al.

2021) (further on referred to as ”Paper I”), provided

a statistical analysis of the instability occurrence rate

and nature of predicted waves by analyzing VDF data

sampled by Helios I and II between 0.3 and 1 au and

fitted as a sum of Maxwellian componenents (Ďurovcová

et al. 2019). Processing ∼ 1.5M VDFs using the Plasma

in a Linear Uniform Magnetized Environment (PLUME)

dispersion solver (Klein & Howes 2015) created a rich

data set of ∼ 630K unstable intervals. Organizing the

results by different solar wind parameters, we concluded

that the Coulomb number—the estimated number of

Coulomb thermalization timesNC(cc) = νccr/vsw,c, with

νcc the collision frequency of core protons, see Hernan-

dez et al. (1987); Kasper et al. (2017) for details— is the

strongest indicator of both how often unstable modes are

induced and the amplitude of their growth rates. In the
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young solar wind, over 80% of intervals were found to

be unstable. As the collisional processing becomes sig-

nificant, that percentage declines exponentially, until we

reach collisionally old wind close to LTE, where insta-

bilities are predicted to arise less than 10% of the time,

and the associated growth rates are significantly weaker

than those encountered in younger wind.

A natural expansion of this result would be to provide

a more complete picture of the relation between various

instability characteristics and VDF parameters of inter-

est for the solar wind and heliospheric plasmas. This

task has turned out to be very complicated, primarily

because of two major issues: (1) even though the data

set is very large, some parts of the phase space are filled

rather sparsely due to instrument limitations or features

of the fitting algorithm (both discussed in detail in Pa-

per I), driving a need for prediction of the unstable mode

properties for a generic VDF, and; (2) difficulty of au-

tomatized identification and classification of any given

unstable mode. For a given interval, this task is straight-

forward, and sometimes fairly simple. However, build-

ing an automatized process that takes into account 11

or more features of the unstable mode, e.g. frequency,

growth rate, direction of propagation, plus up to 13

variables that characterize the VDF, e.g. thermal-to-

magnetic pressure ratios, temperature anisotropies and

disequilibrium, using statistical methods only was not

feasible.

The main focus of this work is to provide the tools nec-

essary to address these two issues, which is done through

the development of customized Machine Learning (ML)

models, trained and tested using the processed Helios

observations. In Section 3.1, we train the classifier to

distinguish if a given VDF is either stable or unstable.

In Section 3.2, we describe the regression codes that es-

timate the behavior of the most unstable mode for an

observed particle VDF. Combination of the two algo-

rithms provides the ability to predict unstable modes for

any given VDF—widening our research scope to generic

distributions represented as a set of Maxwellians, not

just the ones observed—addressing problem (1) for the

parameter range of interest. To resolve (2), we build a

classification algorithm that divides the unstable modes

into clusters based on their weighted distance in phase

space (Section 3.3). The parameters of the clusters cor-

respond very well with characteristics of theoretically

described modes, enabling a physical interpretations of

the kinds of modes expected to be driven unstable. This

feature is the main distinction between traditional dis-

persion solvers and our code. Although various insta-

bility types can have fundamentally different physical

processes as a cause, the numerical parameters of in-

stabilities can be very similar, e.g. similar growth rates,

polarizations, or wavevector regions where they are most

unstable. Therefore, a set of statistical criteria that dis-

tinguishes the type of any given mode has not previously

been developed. Given the complexity of the parame-

ter phase-space, we were not able to find an analytic

methodology to adequately describe it, neither in the lit-

erature nor in our experience with the data set. Hence,

we decided to tackle this problem through ML, and the

first algorithm capable of automatically classifying the

unstable modes in a physically meaningful groups (data

clusters), that correspond to different plasma instability

types, is given in this article.

All of the described algorithms can be utilized sepa-

rately, but are also combined in the Stability Analysis

Vitalizing Instability Classification (SAVIC) code that

can be used by anyone in the community for instabil-

ity characterization in their own research. The code is

user friendly and publicly available at the link provided

in Section 3.4. In this article, we only illustrate exam-

ple applications that either provide important physical

insights or highlight main features of SAVIC, with a com-

plete description of the code is given in the documen-

tation that accompanies the code release, alongside 28

figures. An overview description of SAVIC architecture

and examples of its use are given in Section 3.4. Finally,

we use the results from our codes to illustrate the inter-

play between various types of unstable modes induced

by either core protons, beam protons, or α particles, and

their apparent hierarchical structure in governing the so-

lar wind dynamics in Section 4. The results given here

provide us with all the required tools to build a compre-

hensive model of solar wind linear instabilities and their

role in the solar wind evolution, which will be the topic

of the next article in the series (Paper III).

2. DATA AND METHODOLOGY

Paper I describes the processing of the database pro-

vided by Ďurovcová et al. (2019). Here, we briefly re-

view the features of importance for this article. Approx-

imately 1.5M ion VDFs are fitted as a sum of three gen-

erally anisotropic bi-Maxwellian (Equation 1) VDFs—

a proton core, proton beam, and α particles, with the

beam and α populations having a drift with respect to

the core

fj=c,b,α =
nj

π3/2w2
⊥,jw∥,j

e
−

(v∥−∆v,j)2

w2
∥,j e

− v2
⊥

w2
⊥,j (1)

We label the thermal velocity as w⊥,∥,j =√
2kbT⊥,∥,j/mj and the drift between the core and

population j as ∆v, j. Here kb is the Boltzmann con-

stant, and mj , nj , and T⊥,∥ are the particle mass,



3

density, and temperature for each VDF component

respectively. Neither of the non-core populations nec-

essarily needs to be identified in the fitting routine,

dividing the data into four subsets: core only (C), core

and beam (CB), core and α (Cα), and core, beam,

and α (CBα); see Table 1 in Paper I. The ion VDFs

were sampled over a period of about one solar cy-

cle (1974-1985) by the two Helios spacecraft equipped

with I1a and I1b particle analyzers (Schwenn et al.

1975). In general, usage of linear dispersion solvers (see

e.g. Roennmark (1982); Quataert (1998); Verscharen &

Chandran (2018)) enables identifying a wave mode at a

particular location in the wavevector / frequency space.

The PLUME solver (Klein & Howes 2015) can be applied

to the set of observed VDF parameters P to provide

these solutions. The dimensionless parameters that

comprise P include the core proton parallel plasma beta

β∥,j = 2µ0njkbT∥,j/B
2 where µ0 is magnetic perme-

ability of vacuum and B is the magnetic field intensity,

the temperature anisotropies of each component, the

temperature disequilibrium between the components as

well as their relative densities and drifts (see Equations

1 and 2 or Paper I). In Paper I, we use its complement,

PLUMAGE software, which performs contour integration

of the dispersion relation D
(
ω,k

)
, where ω = ωr + iγ,

over the upper half of the complex frequency domain to

determine if a given VDF is stable or unstable (Klein

et al. 2017). The contour integration limits can be ad-

justed to increasingly large values of γ to identify the

Most Unstable Mode (MUM). The PLUMAGE code deter-

mines basic information about the MUM: growth rate

normalized to proton gyrofrequency γmax/Ωp, real fre-

quency ωmax
r /Ωp, wavevector normalized to gyroradius

of core protons kmaxρc, and the angle between wave

propagation and the magnetic field θmax
kB ; which is then

fed back into PLUME, finding the detailed mode proper-

ties: e.g. electromagnetic eigenfunctions and estimated

emitted power for each component, completing the set

of the MUM wave parameters provided by PLUME, which

we will refer to as W . The core proton gyroradius and

cyclotron frequency are given as ρc = mpw⊥,c/ecB and

Ωp = ecB/mp, where ec is elementary charge. For each

VDF, the PLUME stability analysis provides between 11

and 21 output variables, depending on the number of

fitted VDF components.

Such high dimensionallity was the main motivation

for introducing ML for stability analysis. Three types

of algorithms are used in this work: 1) classification—

determining if a given VDF is stable or unstable, and

identifying the emitting component; 2) regression—

evaluating W for a given VDF, and; 3) clustering—

characterizing different types of unstable modes within

each subset.

Both classification and regression were performed us-

ing the supervised Extreme Gradient Boosting (XGB)

learning algorithm (Chen & He 2015). This powerful,

constantly evolving open source code (XGBoost 2022),

is a scalable, parallel distributed gradient-boosted (GB)

decision tree. In general, a decision tree creates a model

that predicts the desired solution by evaluating a tree-

like cascade of logical levels branched via if-then-else

True/False prompts, estimating the minimum number

of questions needed to assess the probability of making

a correct decision. GB algorithms create a number of

different models and combine them into a single more

accurate model based on the gradient of the error. The

final prediction is a weighted sum of all of the separate

tree predictions. The innovation introduced by XGB is

that trees are built in parallel, instead of sequentially like

in traditional GBs, scanning across gradient values for

each new branched level. This way, XGB makes use of

CPU/GPU resource parallelization to train the tree lev-

els of the required accuracy within a reasonable amount

of time, which would not be possible with other algo-

rithms. This approach is probably the reason why for

our data set, which has vastly different levels of cover-

age across the multi-dimensional phase space, GB vastly

over-performs various linear and polynomial algorithms

(Section 3). Such superior performance of XGB is well-

established for financing models (Horemuz 2018), and

has opened the path for numerous applications in that

sector (Li et al. 2022).

The clustering is done via unsupervised Gaussian Mix-

ture (GM)—the expectation-maximization algorithm

for fitting mixture-of-Gaussian models in an arbitrary

number of dimensions (Bishop & Nasrabadi 2006; Mc-

Nicholas 2016). This model, widely applied in fields

like psychology (Shahin et al. 2019) and finances (Ho-

doshima 2019), increasingly finds utility in plasma

physics (Dupuis et al. 2020). The “proximity” of P
and W parameters in phase space determines the dis-

tribution of solutions over a predetermined number of

clusters. The number of clusters was determined empir-

ically for each of the subsets: C (4), CB (8), Cα (6),

CBα (12). The physical motivations behind these clus-

ters are discussed in Section 3.3.

3. STABILITY ANALYSIS VIA MACHINE

LEARNING ALGORITHMS

Before embarking on the description of the ML meth-

ods in our work, we note that the next two subsections

are almost completely technical, with very limited phys-



4 Martinović & Klein

ical insight; a reader interested only in physical inter-

pretations may skip directly to Section 3.3.

3.1. SAVIC-P - Predicting the plasma VDF stability

For the set of parameters P associated with a given

VDF, the first step is predicting if it is capable of gen-

erating any unstable modes. If it is not, than the VDF

is classified as stable. We train four prediction algo-

rithms associated with the four data subsets (C, CB,

Cα, CBα) using using 90% of the available data, and

perform testing using the remaining 10%. Following the

numbers provided in Table 1 of Paper I, the sizes of the

four training sets are ∼54K, ∼195K, ∼67K, and ∼252K,

respectively. The confusion matrices for the four subsets

shown in Figure 1. The train / test ratio is arbitrary,

and reducing the training set down to ∼ 40% of all data

does not affect the accuracy of the predictions by more

than a fraction of a percent.

The prediction is notably more accurate for the case of

a single proton population (one anisotropic Maxwellian)

than for the other subsets. This feature is fairly easy to

understand. Figure 2 shows the unstable intervals on

a traditional “Brazil” plot (Kasper et al. 2002). The

number of unstable modes that can arise for a single

Maxwellian is limited, and their constraints are well de-

scribed with analytical expressions for the temperature

anisotropy as a function of plasma β∥ (see, e.g. Ver-

scharen et al. (2016)). These analytical expressions,

shown in Figure 2, are very accurate near moderate val-

ues of plasma β∥ near unity where they have been histor-

ically applied, but are less accurate in lower- and higher-

β plasmas. For this reason, these parametric curves were

not used to aid the training algorithm. Including these

expressions in testing versions of SAVIC-P reduced its

accuracy, compared to the code described here. Intro-

ducing beam and α components drastically increases the

number of potential free energy sources (see the list of

P parameters in the SAVIC-P input columns of Table

1), and consequently the potential number of unstable

modes to be encountered, scattering the stability mar-

gins over a large number of dimensions in the phase

space. The relatively small population in some parts of

this multi-dimensional space (e.g. low β∥, c) is the main

reason why SAVIC-P accuracy drops by a few percent.

3.2. SAVIC-Q - Quantifying the Instability Parameters

Once a VDF is deemed unstable, we can quantify the

features of the MUM. For training of the SAVIC-Q algo-

rithm, we use P to predict a subset of W , specifically

the angle θmax
kB and the normalized emitted power lev-

els for each component, PC,B,α ≈ γC,B,α/ωr (c.f. §11.8
of (Stix 1992)). These variables are chosen as they are

used as input for the classifier described in Section 3.3,

but the SAVIC-Q regressors can be expanded to predict

the rest of the W variable set if needed.

The regression process is, in general, less accurate

than classification. In this case, we diagnosed the pri-

mary source of uncertainty to be the very large range

of the emitted power values. When a given ion com-

ponent is detected as part of the distribution, but does

not participate in the unstable behavior, than the cal-

culated emitted or absorbed power is not exactly zero,

but a very small numerical value. Consequently, PC,B,α

varies by up to 10 orders of magnitude, and can be pos-

itive (representing emission) or negative (absorption).

Traditionally, performance of a regressor decreases sig-

nificantly if it is required to process such a large range

of input values.

To overcome this problem, we introduce another clas-

sifier within SAVIC-Q, prior to regression, that deter-

mines for a given unstable VDF and MUM, which com-

ponents emit energy. An example for the CB subset is

given in Figure 3, again for a training sample containing

90% of the subset. We separate the regressor algorithms

into cases where the core and beam components are ei-

ther emitting (+) or not emitting (-) power, with the

wave propagation being either parallel (k∥) or oblique

(k⊥) with respect to the magnetic field (SAVIC-Q output

I column of Table 1). As the “C-B-” scenario is just

a stable interval, up to six regressors can be trained.

Two of the groups tabulated in the first and third rows

(“C+B+k⊥” and “C+B-k⊥”) do not have sufficient data

to train an accurate regressor, and are thus merged with

their k∥ counterparts. Once the intervals are grouped by

the sign of the emitted power from each of the compo-

nents, we can use the logarithm of PC,B,α to decrease

the span of the input. Following (Klein et al. 2019) and

Paper 1, we consider PC , PB < 10−4 to be zero. Hence-

forth, we have built all of our models to use the loga-

rithmic values of variables whenever possible—check the

documentation for details.

Results of the SAVIC-Q quantification are shown on

Figure 4, with specific examples given in the output II

columns of Table 1. The top panels correspond to the

third and fourth rows of Figure 3—the proton beam is

expected to either not participate in driving the MUM,

or to absorb some of the emitted power. The span of

the θmax
kB angle is large as we need to process both

parallel and oblique modes, given the relatively small

sample size for the latter, but the method still pro-

vides a satisfying accuracy of over 95%. The perfor-

mance of the regressor is improved if we observe only

oblique (k⊥) modes (bottom panel), with θmax
kB values

being concentrated over the range of only ∼ 15◦. Bet-
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Figure 1. Confusion Matrices of plasma stability predicted by SAVIC-P for the four ion VDF subsets, compared against
PLUMAGE-derived instability calculations as the ”true” values.

ter estimates of PC compared to minor components PB

and Pα are not surprising, as there are only two dom-

inantly influential parameters—β∥,c and core tempera-

ture anisotropy—while PB has four major parameters:

beam temperature anisotropy, drift, beam/core density

and temperature ratio, none of which can be ignored by

the regressors. As particles from each of the VDF pop-

ulations will interact with the MUM (Verscharen et al.

2019), our W parameter predictions from similar regres-

sors within SAVIC-Q, e.g. “C+”, “C+B-”, “C+α-”, and

“C+B-α-”, are incompatible with each other. In total,

we train 17 regressors: 1, 4, 4, and 8 for C, CB, Cα, CBα

data sets, respectively. The details on all the regressors

are given in the public SAVIC documentation.

3.3. SAVIC-C - Classification of Unstable Modes

The final, and physically most interesting, ML model

aims to classify the modes predicted to be unstabled by

SAVIC-P and with parameters quantified by SAVIC-Q,

into groups through clustering. Each cluster should ide-

ally represent all the intervals where a certain type of

instability (e.g. Ion Cyclotron (IC) or mirror mode)

is active, also noting which component is emitting en-

ergy (e.g. (B) for beam on Figure 5), and none of the

intervals that do not feature this particular instability.

Example outputs from SAVIC-C are found in the final

column of Table 1 and as a function of NC(cc) in Figure

5. Providing a label that describes the governing physi-

cal mechanisms, in addition to the numerical description

of a predicted unstable mode, is a novel element of this

code compared to traditional dispersion solvers.

For each of the four subsets, the number of clusters

used in the GM algorithm that underlies SAVIC-C is de-

termined empirically. To find the appropriate number

of clusters for each subset, we manually tested dozens of

combinations of variables drawn from P andW , settling

on slightly different input sets for all four data subsets,

with the entire P set, PC , θ
max
kB , and analytical thresh-

olds for core instabilities—IC, mirror, Parallel (PFH)

and Oblique Firehose (OFH)—(Verscharen et al. 2016)
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Figure 2. Comparison of the phase space densities of the unstable VDFs as a function of β∥,c and core temperature anisotropy
for intervals when only core (left) and where all three ion components (right panel) are detected. Solid lines show analytical
thresholds for core anisotropy instabilities—Ion Cyclotron, Mirror, and Parallel and Oblique Firehose (FH) for γmax/Ωp = 10−4,
following Verscharen et al. (2016). The parametric description of IC instability threshold (blue line) slightly differs from PLUMAGE

predictions on left panel, especially at low β∥, c. This difference causes the SAVIC-P to be more accurate if not aided by the
parametric curves.

used for all four data subsets. For the CB, Cα, and CBα

subsets, we add PB,α (when positive), and the analyt-

ical thresholds for the firehose instability for a multi-

component plasma (Chen et al. 2016). It is important

to note specific behavior of the models in relation to

mode properties. Namely, if some of the W variables

are very similar for different instabilities due to their

similar physical features, such as compressibility δn or

γmax/Ωp, than including these makes the clustering al-

gorithm less accurate. There are several major technical

features of the clustering results shown on Figure 5 that

are worth emphasizing, while exhaustive discussion of

physical implications will be given in Paper III.

Core results are fairly straightforward to obtain, as

there are only four major instabilities to consider. An

interesting result is that the IC is the dominant insta-

bility for all the anisotropy values above unity, except

for β∥,c ≳ 10. The non-propagating mirror mode is,

once triggered, expected to grow with anisotropy in a

notably more rapid fashion than the IC for most val-

ues of β∥,c (Gary 1993; Hellinger 2007; Klein 2013) and

to be the MUM for most intervals above the green line

on the left panel of Figure 2. On the contrary, it turns

out that for most of the VDFs measured in the solar

wind that are sensitive to mirror mode, the IC remains

the MUM, as the realistic VDFs are both very far from

the IC threshold (blue line) and sufficiently close to the

mirror threshold (green line). We confirmed by visual

inspection that SAVIC-C correctly classifies these modes.

The clusters in the CB subset labeled as IC (B)—the

beam is the most intensive emitting component caus-

ing the parallel propagating MUM—also contain an ad-

mixture of parallel fast modes (FMs). In almost all

the intervals from these clusters, the IC mode is trig-

gered by beam anisotropy (IC (B) T⊥/T∥ <> 1) (ei-

ther larger or lower than unity), and FM by the beam

drift. In the collisionally young wind, IC dominates,

and FM will not be detected as the MUM if there is

beam anisotropy induced parallel IC mode present, un-

less the beam drift values are very high (Daughton &

Gary 1998). In the collisionally old wind, when beam

anisotropy is low enough to stop being a formidable

source of free energy, and the drift is not strong enough

to power the parallel FM, the marginally unstable dis-

tributions dominantly feature the slow growing oblique

FM as MUM. It is important to emphasize that recog-

nizing beams as separate, drifted component instead of

working with the moments of the entire proton VDF

is crucial for accurately predicting these modes (Klein

et al. 2021) and finding the agreement with in situ obser-

vations of local electric and magnetic field (Vech et al.

2020).

The Cα data set is comprised of 6 clusters instead

of 8, primarily because α distribution is fitted as a sin-

gle Maxwellian due to instrument range and resolution

limits. Consequently, the fitting methods developed by

Ďurovcová et al. (2019)—and in complementary work by

Stansby et al. (2018)— identify very large parallel tem-
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Figure 3. Classification of unstable modes for the CB data subset. The ”+” sign for core and beam signals that the component
is emitting power, while k⊥ and k∥ stand for oblique and parallel propagation, respectively. The groups that share the same
SAVIC-Q regressor are marked by brackets.

peratures T∥,α in the young wind, as they are unable to

separate drifted α beams. Unlike for the case of pro-

ton beams, about a third of the parallel modes given in

green on bottom left panel of Figure 5 are FMs induced

by the excess parallel pressure of the α component. It is

also worth noting that light green and dark blue clusters

in the bottom left panel of Figure 5 are fundamentally

different in nature. As discussed in detail in Paper I, the

beam can sometimes be mis-identified as part of the core

due to instrument limitations. This will lead to artifi-

cial increase in T∥,c, which our clustering algorithm rec-

ognizes as Chew-Goldberger-Low (CGL) FH—a MHD

instability caused by very strong pressure anisotropy

(Chew et al. 1956). On the other hand, the light green

cluster features the combination of two P components—

T⊥(α)/T∥,α ≳ 1 and T⊥(c)/T∥,c ≲ 1 very close to PFH

threshold—where the core protons are just barely unable

to create the FH instability, but are anisotropic enough

to resonate with mildly drifted α component and absorb

a fraction of the power emitted from the α population.

This phenomena is characteristic for older wind, and its

beam-core interaction analog is observed for CBα, but

this time with different type of phase space resonance

with strongly drifted and highly anisotropic beams.

The presence of the mild ”background”, oblique beam

FM is present in the collisionally old wind for both the

CB and CBα subsets. This mode can be “resonant” with

the core in some cases—having the core absorb part of

the energy emitted by the beam (see Section 6 of Ver-

scharen et al. (2019)). Also, as it is mostly sampled

in the young wind where the instrument performance

is most optimal, CBA subset features some VDFs with

highly anisotropic core component that have the mirror

as MUM. This phenomena will be discussed in detail
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Figure 4. Examples of SAVIC-Q regression predictions for the CB data subset. In the top row, produced by C + B− regressor,
we process the intervals where only the core is the emitting component, corresponding to data from third and fourth row on
Figure 3. The bottom row (C− B+ k⊥ regressor) corresponds to fifth row of Figure 3, where PB and θmax

kB (in radians) are
estimated only for oblique modes.

in the follow-up paper, where we will argue that this

mode is the ever-present regulator of the beam drift in

the solar wind. Due to large number of clusters within

the CBα subset, and some of the clusters having very

low number of intervals, a complete separation of modes

was not achieved in all cases. For example, the cluster

labeled as “IC (B); borderline PFH” contains 0.96% of

all the subset intervals, and contains two groups: weakly

unstable (γmax/Ωp < 0.5 · 10−3) IC (B) intervals and

very weakly “borderline” PFH unstable intervals. Ide-

ally, both of these groups should belong to their respec-

tive clusters, but this small cluster was still maintained

within SAVIC-C as a remnant of the uncertainty of our

method.

3.4. Public Stability Analysis Code Architecture and

Usage Example

The three parts of the SAVIC code—stability predictor

(SAVIC-P), quantifying classifier / regressor (SAVIC-Q),

and unstable mode classifier (SAVIC-C)—presented in

Sections 3.1-3.3 are available at https://github.com/

MihailoMartinovic/SAVIC. They can be used sepa-

rately, but are also incorporated in a chain that provides

a full analysis of a given VDF. Here, we will first present

the concept of its use following the CB scheme in Figure

6, and then provide an illustrative example.

The input contains the information about one or more

VDFs to be processed. The format is explained in Pa-

per I, the code documentation, and is also given in the

example below. The VDF parameters are read and cat-

egorized into one of the four subsets. The SAVIC-P clas-

https://github.com/MihailoMartinovic/SAVIC
https://github.com/MihailoMartinovic/SAVIC
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Figure 5. Overview of the instability clusters for all four subsets identified by SAVIC-C. The lack of α induced oblique modes is
due to VDF fitting methods, which conflates core and beam populations of α particles into a single Maxwellian. Clarifications
of different labels are given in Section 3.3.
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Figure 6. The SAVIC algorithm of plasma instabilities prediction, quantification, and classification. Cα and CBα classifiers
and regressors are suppressed into single boxes for simplicity.
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sifier described in Section 3.1 then determines if the dis-

tribution is stable or unstable (third column). If it is

stable, the algorithm ends. Otherwise, a second classi-

fier within SAVIC-Q described in Section 3.2 is engaged,

determining if the mode is parallel or oblique, and if the

emitting component is core, beam, or both (light orange,

fourth column). Based on that information, the data is

sent into one of four (for the CB case) SAVIC-C logical

regressors, given in light green in fifth column. The out-

put of this step is the emitted power, and the wave vec-

tor propagation angle, which is, along with P, enough

information to feed the SAVIC-C classifier described in

Section 3.3 (sixth column, green). The final output in-

cludes the information on emitting components, direc-

tion of propagation, and a type of unstable mode.

An example can be given as follows. The input data

is in the first section of Table 1. The SAVIC-P finds that

four out of six VDFs are unstable, while SAVIC-Q diag-

noses which component emits energy. Each MUM has

its main free energy source—a population of particles

within either core or beam that is sufficiently far away

from LTE to intensively emit energy in situ. In this case,

the energy is emitted due to either strong core/beam

anisotropy, or the beam moving much faster than the

core. The VDF parameter responsible for the instability

is italicized in the table. For each unstable interval, the

appropriate SAVIC-Q regressor (Section 3.2) is launched

to find the power from the emitting component(s), and

the propagation angle. Finally, all the obtained infor-

mation is fed into the GM clustering algorithm, which

provides the mode description (Section 3.3).

All the described steps are automatized, and therefore

activated by a single user command for an arbitrarily

large data set. The SAVIC code is extremely efficient

as it uses already trained ML entities, and can process

millions of VDFs in only seconds of real time.

4. HIERARCHICAL STRUCTURE OF SOLAR

WIND INSTABILITIES

Each of the algorithms presented in Section 3 can be

used not just for the overarching description of the so-

lar wind linear instabilities, as we aim to do in Paper

III, but also for addressing any stability related project

that would otherwise require millions of CPU hours con-

sumed by a powerful dispersion solver, such as PLUME,

to process any statistically large data set. For exam-

ple, even though PLUME and PLUMAGE solvers are highly

optimized, producing the training data set used here

and described in Paper I required ∼8M CPU hours. In

this Section, we demonstrate the utility of the cluster-

ing algorithm (Section 3.3) by investigating the overall

interplay between different types of instabilities as the

solar wind is being gradually processed by collisions.

The CBα data set has 12 identified mode types (Fig-

ure 5, bottom right). To illustrate the evolution of the

these modes, we merge them into 5 groups: parallel

modes driven by any of the three components, beam

induced oblique modes, and FH modes. We group them

this way to illustrate the potential of using SAVIC-C by a

user with developed physical intuition regarding a given

problem. Moreover, addressing 12 separate modes in

detail is beyond the scope of this paper, and would be

a tedious process with little additional physical insight

for this particular example. On the second panel of Fig-

ure 7 we show median values of PC , PB , and Pα. It is

important to note that if a MUM is induced by a single

component (e.g. beam), W also contains information

about the power from other two components that might

be positive or negative, e.g. red and violet areas on up-

per right panel of Figure 5, respectively. For simplified

analysis, we only take the positive power values into ac-

count in the second panel of Figure 7. We also mark the

collisionally old sector of the wind where Helios obser-

vations have limited confidence, which is addressed in

detail in Paper I.

The median of PB is the highest of the three every-

where except in very young solar wind, while Pα is al-

most constantly the lowest. The apparent increase in

Pα in older wind is the VDF fitting effect explained in

Section 3.3. This simple approach would suggest that

the beams are primarily responsible for regulating the

linear mode dynamics, which contradicts the findings of

Paper I. A similar conclusion can be drawn from the

third panel, where median growth rates of each group

of modes are shown in solid lines. The beam induced

modes seem to grow much faster—and therefore emit

more power—than any other group by far in both mod-

erately and mostly collisionally processed solar wind. To

clarify this apparent contradiction, we plot the same me-

dian values in the bottom panel, but normalized to their

occurrence in each of the bins. This normalization clar-

ifies that, even though the parallel beam induced modes

grow quickly, they are not nearly as abundant as the core

anisotropy IC mode, which is constantly present until

the bulk of the core distributions become almost com-

pletely isotropic. As the core participation drops, the ac-

tivity of α component, which generally has non-zero drift

with respect to the core and therefore has “slower colli-

sional clock” (Kasper et al. 2017; Alterman et al. 2018),

becomes more important. In parallel, the slowly grow-

ing oblique FM is constantly induced by the decrease

in the Alfvén velocity vA as the solar wind expands,
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Table 1. Example of the SAVIC code usage for VDFs from the CB subset.

SAVIC-P SAVIC-Q SAVIC-Q SAVIC-C SAVIC-C

P—input I for all codes output output I & input II output II input II output

β∥,c
T⊥,c

T∥,c

T∥,c
T∥,b

T⊥,b

T∥,b

nb
nc

∆vb,c
vAc

unstable mode class PC PB θmax
kB MUM type

1.0 1.0 1.0 1.0 0.05 0.5 False – – – – –

1.5 2.5 0.8 1.0 0.05 0.5 True C+B-k∥ 0.19 – 0.0041 IC (C)

0.5 1.0 1.0 3.5 0.1 1.5 True C-B+k∥ – 0.12 0.0039 IC (B); T⊥/T|| > 1

0.5 0.5 2.9 2.4 0.08 1.5 True C-B+k⊥ – 0.012 0.57 FM (B), oblique

0.5 0.7 0.8 0.8 0.01 0.2 False – – – – –

0.8 3.1 1.0 3.9 0.1 1.9 True C+B+k∥ 0.21 0.0007 0.0010 IC (B), unstable core

and is apparent only when other free energy sources are

depleted. Finally, collisionally old solar wind features

FH modes that can easily arise in high-β environments.

They are likely induced by fluctuations of the VDF (Ver-

scharen et al. 2016; Arzamasskiy et al. 2022) and their

median growth rates are very low, but this does not im-

ply that their role in the solar wind evolution can always

be neglected. Third panel of Figure 7 also shows 80th

percentile of each of the mode groups (dotted lines),

which is between a factor of 3 and an order of magni-

tude above the median for each group, implying that

even the modes that are generally weak can occasion-

ally drive very intense plasma waves. We conclude this

discussion by reminding the reader that the reasoning

presented here is an overall insight that can provide a

generalized description, but cannot be directly applied

to isolated intervals and case studies. To access stability

properties of any limited sample of VDFs, it is required

to use either the SAVIC code presented here, or a tradi-

tional dispersion solver.

5. CONCLUSIONS

After statistical assessment of the database of linear

instabilities derived from the VDF fits of Helios observa-

tions performed in Paper I, we continue our effort to pro-

vide a complete description of the behavior of solar wind

instabilities. Undertaking a detailed investigation of a

phase space that spans over 20 variables, almost all of

which can meaningfully impact the underlying physics,

has turned out not to be feasible via traditional meth-

ods. In this intermediate installment of a series of arti-

cles on the topic, we managed to overcome the difficulty

of handling the extensive multi-dimensional database by

building a set of ML algorithms that can predict the

VDF stability, estimate features of unstable modes, and

classify them into groups defined by physical processes.

We used our methods to investigate the overall par-

ticipation of parallel and oblique modes driven by pro-

ton core, proton beam, and α VDF components to find

that, although the parallel IC modes caused primarily

by beam anisotropy emit the largest amount of power

once they arise, their occurrence rate is not enough to

make them the primary driver of the solar wind wave dy-

namics, except in the moderately collisionally old solar

wind. In the young wind, the core induced IC instability

is practically ubiquitous, while in the collisionally pro-

cessed wind, close to LTE, the beam induced oblique and

core Firehose are, for most intervals, the only remaining

unstable modes.

Improvements of the SAVIC code, including processing

of new generic VDFs with PLUME as expanded training

data sets as well as using observations from other space-

craft, including the Wind database, as an additional

training resource are planned for future work. These

improved versions will be incorporated in the publicly

available code.
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Figure 7. Quantification of the contribution of the five groups of unstable modes to the solar wind stability dynamics: parallel
modes caused by core, beam, or α particles, beam oblique modes, and FH instabilities. Second panel shows medians of positive
values of PC , PB , and Pα. In the third panel, medians and 80th percentiles of the MUM growth rate are given in solid and
dotted lines, respectively. Finally, the total contribution of each group is quantified in the bottom panel, where the emitted
power is normalized by the relative number of occurrences for each NC(cc) bin (for the data point to be shown, there must be
at least 100 intervals from a group in a given bin). The part of phase space where Helios instruments have limited reliability is
shaded in grey.
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